
Varanus: More-With-Less Fault Localization in Data
Centers

Vaishali Sadaphal, Maitreya Natu, Harrick Vin
Tata Research Development and Design Centre,

Pune, India, 411013.
Email: {vaishali.sadaphal, maitreya.natu, harrick.vin}@tcs.com

Prashant Shenoy
University of Massachusetts,

Amherst, USA.
Email: shenoy@cs.umass.edu

Abstract—Detecting and localizing performance faults is cru-
cial for operating large enterprise data centers. This problem
is relatively straightforward to solve if each entity (applica-
tions, servers, business processes) within the data center can
be instrumented and monitored explicitly. Unfortunately, such
instrument-everything approach is often not tenable because of
the limits imposed by enterprises on the permissible amounts
of instrumentation intrusiveness and monitoring overhead. In
this paper, we address the problem of achieving high accuracy
of detecting and localizing performance faults in data centers,
while minimizing the required instrumentation intrusiveness and
overhead. We present novel algorithms for solving three key sub-
problems: (1) How many monitors are required and where should
they be placed within the data center? (2) Given the proposed
instrumentation plan, how to detect the existence of performance
faults accurately? and (3) How to localize the root-cause of the
fault? We demonstrate the effectiveness of our approach for a
real-world data center topology as well as through extensive
simulations.

I. INTRODUCTION

Today’s enterprises run their mission-critical applications in
data centers. Automatic detection of performance problems–
resulting from software or hardware faults–and subsequent
localization and correction of these faults is critical for the
operation of most enterprises.

Fault localization of distributed data center applications is,
however, a challenging task. Much of the difficulty in detect-
ing and localizing faults stems from the inherent scale and
complexity of enterprise data center applications. Consider,
for instance, an equity trading application run by a top-tier
investment bank in the US. This single application comprises
469 nodes/software components for processing incoming stock
trades, 2,072 communication links between components, and
39,567 unique paths through which incoming stock trades flow
in the system. Detecting performance problems (e.g., in end-
to-end request processing latency) and pinpointing the problem
to one or more culprit nodes is difficult in such complex
systems.

Typically the effectiveness of fault localization depends on
the number and the type of data collection monitors (“probes”)
available in the system. Retrofitting an operational system with
the instrumentation required to facilitate fault localization,
however, is always a challenge [1]. System operators and

administrators are reluctant to introduce probes into the pro-
duction environment, especially if the probes are intrusive (and
can potentially modify the system behavior). Thus, a practical
fault localization strategy should enable fault detection and
localization with minimum instrumentation of the system.
Much of the prior research in the area of fault localization
[2], [3] has ignored this very basic practical requirement.
This prior work has yielded sophisticated algorithms for fault
localization, while assuming that all of the data required by
the algorithm for its decision making can be easily gathered.
Unfortunately, in most cases, collecting such data requires
significant instrumentation of existing production data center
systems, which makes it difficult to deploy in real-world
operational systems.

In this paper, we advocate a “do more with less” approach
for practical fault localization in large distributed data-center
applications—our goal is to minimize the number of probes
and reduce the amount of monitoring data necessary to de-
tect and localize performance problems in the system. We
implement our “do more with less” approach for detecting and
localizing performance problems in a system called Varanus.
In designing and implementing Varanus, this paper addresses
three key questions.

1. How many monitors are required and where should they
be placed within the data center? The instrumentation plan
must achieve high-levels of fault detection and localization ac-
curacy, while simultaneously minimizing the instrumentation
intrusiveness and monitoring overhead. Varanus incorporates
monitor/probe placement techniques to address this key chal-
lenge.

2. Given the proposed partial instrumentation plan, how to
detect the existence of performance faults accurately? A mon-
itor can detect a fault in the system by observing end-to-end
performance of the on-going requests. With minimal instru-
mentation the problem of fault detection becomes complicated
by the fact that multiple end-to-end paths may pass through
each monitor. Thus, detecting node/path-level performance
faults requires one to automatically detect significant changes
in the composite time-series of latency values observed at each
monitor.

3. How to localize the fault to one or more culprit nodes?
A monitor can only detect the presence of fault at one or
more of its upstream nodes. In order to correctly localize978-1-4673-0298-2/12/$31.00 c© 2012 IEEE

the fault to culprit nodes, the observation across multiple
monitors needs to be consolidated to narrow down the fault to
fewer nodes. Depending on the graph reachability properties,
performance fault at a node, in theory, can be detected at one or
more downstream monitors. However, various practical issues
such as non-uniform use of paths, inaccurate fault detection,
presence of multiple faults, etc. make the problem difficult.

In this paper, we present novel algorithms for addressing
each of the above three questions, and thereby provide an
end-to-end solution to the problem of detecting and localizing
performance problems in complex distributed server appli-
cations. While Varanus can detect and localize performance
problems within a distributed application, we presently do
not focus on the problem of determining the root cause of
the performance problem on the localized nodes; previously
proposed techniques on root-cause determination [4] can be
used for this purpose, in conjunction with Varanus.

As part of Varanus’ design, we first present an algorithm
that exploits the concept of fault propagation in graphs to
instrument the smallest set of monitors for achieving the de-
sired level of fault detection and localization accuracy. Second,
we present a self-tuning algorithm for detecting significant
changes in the latency distribution observed at each monitor;
our algorithm uses the Student’s t-test [5] as the basis for
detecting significant changes in the observed latency distribu-
tions. The self-tuning allows the algorithm to automatically
calibrate various parameters to minimize the false-positives
and false-negatives in fault detection. Finally, we present a
probabilistic algorithm that improves the accuracy of fault
localization by combining the statistical confidence measure of
fault detection at a monitor with the probability of observing
a faulty node at the monitor.

We have evaluated the effectiveness of Varanus’ algorithms
using real-world application data and synthetic datasets. Our
experiment results on a real-life topology show that we can
achieve effective fault localization by deploying monitors only
at 21% of the total nodes. The experiment results for sensitivity
analysis of fault detection and localization show that Varanus
can perform localization with greater than 80% accuracy with
false positives and false negatives being less than 20%.

The rest of the paper is organized as follows. In Section II,
we formulate the problem of detecting and localizing perfor-
mance faults in data centers. We present novel solutions to
the problems of monitor placement, performance fault detec-
tion, and root-cause localization in Sections III, IV, and V,
respectively. We demonstrate the effectiveness of our approach
in Section VI, and discuss related work in Section VII. We
summarize our contributions in Section VIII.

II. PROBLEM FORMULATION AND TERMINOLOGY

We model data centers supporting complex distributed ap-
plications and services as a directed acyclic graph, with nodes
representing application processes and servers, and edges
representing inter-process communication. Requests enter the
system from any one of the source nodes, flow through a

number of intermediate nodes, and exit from any one of the
exit nodes.

In this paper, we focus on performance problems resulting
from an increased end-to-end latency seen by a request from
its entry at a source node to its exit at sink. An increased end-
to-end latency is assumed to be caused by resource overload at
one or more nodes. Our goal is to detect performance problems
and identify the overloaded (“faulty”) nodes contributing to
these violations. A monitor is a node that is instrumented to
measure the end-to-end latency incurred by each request from
the time of its arrival into the system to the time when its
processing is completed at the monitor. Each request carries
with it the information of the time of its arrival into the system.
The monitor observes the time at which the request departs
from the monitor and thus computes the total time the request
spent in the system thus far.

Our approach to fault detection and localization is based
on the observation that node-level faults can be detected at
downstream monitors by observing increase in the end-to-end
latencies. Our approach involves three steps:
1. Identify and instrument a set of monitors so as to achieve
high-levels of fault detection and localization accuracy, while
minimizing the monitoring overhead (Section III).
2. Develop robust techniques for detecting increased end-to-
end latencies (or fault), at each monitor and during each time
interval (Section IV).
3. Finally, identify the potential root-cause node that resulted
in increased end-to-end latency of requests (Section V).

The main insight behind our approach is that the effect of a
faulty node is typically visible at multiple exit nodes. This is
because; once a node is the cause of a performance fault, then
requests passing through the node will experience degraded
performance, and hence monitor nodes reachable from the
faulty node will observe increased end-to-end request laten-
cies. By identifying the monitor nodes that observe increased
end-to-end request latencies, we can localize the fault to a
unique node (or a small set of nodes). To formalize this notion,
we define the notion of a node signature and an observed fault
vector.

Node Signature: The signature of a node is the set of all
monitors that are reachable from the node. Thus, given a set
of k monitors, the signature Si of a node i is a k-bit string
where each bit represents the reachability of the monitor from
the node. Si,j (the jth bit of signature Si) is set to 1 if monitor
j is reachable from node i; otherwise, Si,j = 0.

Fault Vector: Each monitor detects independently the pos-
sible occurrence of a fault by observing significant deviations
in the end-to-end request latencies. Thus, for a data center
instrumented with k monitors, a fault vector F is a k-bit vector
where Fi (the ith bit of fault vector F) is set to 1 when monitor
i detects a possible fault; otherwise, Fi = 0.

As a result, our approach of localizing faults involves:
1. Identification of a set of k monitors such that every node has
a unique signature and deriving a signature Si (∀i ∈ [1, n])
for each node in the graph with n nodes. It is desirable that
we identify a minimal set of monitors so that the monitoring

overheads are minimized.
2. Construction of a k-bit fault vector F for each time-interval
using the fault detection mechanism at the monitor nodes.
3. Matching of each node signature Si(∀i ∈ [1, n]) with the
fault vector F to identify the potential root-cause node.

III. MONITOR PLACEMENT

Given a graph representing a distributed execution environ-
ment of a data center, the monitor placement problem can be
defined as follows: Given graph G = (V,E), find the set of
monitors M ⊆ V of least cardinality such that ∀u ∈ V , the
signature of node u (denoted by Su) is unique.

In the best case, the minimal number of monitors required
to monitor n nodes will be log(n). With log(n) monitors n
unique signatures can be constructed. In the best case, all
nodes in V would be connected to the log(n) monitors in such
a way that n unique signatures can be constructed. A linear
chain is another example topology, where n

2 nodes need to be
chosen as monitors.

In what follows, we first describe two monitor selection
algorithms – one based on deriving Hitting-Set (HS) and the
other based on Information-Entropy (IE) measures of each
node in V . While the Hitting-Set approach yields smaller
number of monitors, the Information-Entropy based approach
is more computationally efficient. We then present a hybrid
approach that combines the best features of these two ap-
proaches. We observe that there is a trade-off between the
required number of monitors and the uniqueness of node sig-
natures. We address this trade-off by proposing an algorithm to
reduce the number of monitors while bounding the maximum
number of nodes with same signature.

While selecting monitors, we assume that monitors are
perfect. If a node fails, a monitor placed at the node or any
successor node will always detect that a failure has occurred
upstream. We address the case of inaccurate detection in
Section V. We generate signatures for single node failures
and address the multi-node failure scenario in Section V.
We assume a fixed topology and do not address scenario
of dynamically changing graphs. Small changes in topology
result in partially accurate signatures which can be addressed
at the level of fault localization (Section V). In the event of
significant topology changes, we propose to recompute the
locations of monitors.

A. Hitting-Set (HS) algorithm

Let A be a set of elements, and let C be a set of subsets
of elements of set A. Then the set H (H ⊆ A) is said to be a
hitting-set of C if it contains at least one element from each
subset in C. The hitting-set H of the least cardinality is said
to be the minimal hitting-set for C.

We now reduce the monitor placement problem to the
minimal hitting-set problem such that an optimal solution
to the hitting-set problem can be used to derive an optimal
solution to the monitor placement problem. Our reduction is
based on the following intuition: For each pair of nodes in
graph G, we construct a set of differentiator nodes; a node

x is referred to as a differentiator node for the pair of nodes
(a, b) if x is reachable from exactly one of the two nodes a
and b, and not both. Formally, given a system graph G(V,E),
create a collection of differentiator sets C as follows: For each
pair of vertices (Vi, Vj) where Vi, Vj ∈ V , construct a set
Ci,j as follows: [Ci,j = (Successor(Vi) ∪ Successor(Vj))
- (Successor(Vi) ∩ Successor(Vj))] where Successor(Vi)
denotes node Vi and the set of nodes in G that are reachable
from node Vi.

Note that the minimum hitting-set problem is NP-Complete.
Given the set C consisting of the sets of differentiator nodes
for each node pair in G, we use a greedy algorithm to compute
an approximate solution for the minimum hitting-set problem
for C. In particular, we select an element Vi ∈ V that is present
in maximum number of sets in C. We repeat this step until
all elements in C are hit. The selected set of nodes represent
the hitting-set H for C.

The hitting-set H thus derived precisely determines the set
of nodes for placing monitors. Such a monitor placement
strategy ensures that the signatures of all pairs of nodes in
G are unique (and are different in at least one bit position).
Given a set of n nodes, the complexity of this approach is
O(k ∗ n3) where k is the maximum number of monitors that
can be placed.

We illustrate the derivation of a hitting-set using an example
shown in Figure 1(a). For the purpose of this illustration,
consider the problem of identifying a set of monitors that
would yield unique signatures for node set T = {1, 2, 3, 4}.
The algorithm first identifies the set of differentiator nodes
for each pair of node T . For instance, for node pair (1, 2),
the set of differentiator nodes is {5, 6, 8, 10}, as these nodes
are either reachable from node 1 or node 2 and not both.
Figure 1(b) shows the differentiator set C for all pair of nodes
in T . Then applying the greedy hitting-set algorithm to C
yields H = {6, 7}. Placing a monitor each at nodes 6 and 7
yields a unique signature for each node in T (see Figure 1(b)).
Note that the signature of node 1 is 00, which also represents
a no-fault scenario. In order to distinguish such an all-zero
signature from the no-fault scenario, we add one additional
monitor at node 1, leading to unique 3-bit signatures for all
nodes in T .

B. Information-Entropy (IE) Algorithm

The monitor placement solution using information entropy
measures of nodes is based on the following intuition: Given
a set of nodes V and a candidate monitor node m, the set of
nodes V can be classified into two subsets based on their
reachability to m. Nodes from which monitor node m is
reachable form one set R, while the remaining nodes (from
which monitor m can’t be reached) form the other set U .
This indicates that if a monitor is placed at node m, the
signatures of nodes in R and U will differ at least at one bit
(corresponding to monitor m). The process of splitting the sets
R and U can be repeated similarly until every node in V can be
assigned a unique signature. This results in a classification tree
with intermediate nodes of the tree representing the monitors.

Fig. 1. Selection of monitors in an example topology shown in (a) using (b) Algorithm HS, (c) Algorithm IE, and (d) Algorithm IEHS.

Observe that the splitting of nodes into sets R and U for
each candidate monitor node m impacts the height of the
classification tree, and hence the total number of monitors
required to create unique signature for all nodes in V . If
a candidate monitor m splits the set of nodes into roughly
equal size sets R and U , then this leads to a classification
tree of low height and hence a smaller number of monitors.
If, on the other hand, the resulting sets R and U have very
different cardinality, then this can lead to highly unbalanced
classification tree, and hence a larger number of monitors.
Thus, to minimize the number of monitors, it is important
to select the classification nodes (or monitors) that split the
set of nodes into almost equal-sized sets R and U at each
level of the classification tree.

To quantify the utility of a node in classifying a set of target
nodes T at each level of the classification tree, we use the
concept of information entropy as traditionally used in building
decision trees. Formally, information entropy Hm(T) for each
candidate monitor node m ∈ T is defined as:

Hm(T) = −p(TR
m)log(p(TR

m))− p(TU
m)log(p(TU

m))

where p(TR
m) and p(TU

m), respectively, denote the fraction of
nodes in T from which candidate monitor m is reachable
or unreachable. Note that the information entropy of a node
indicates the amount of randomness in the classification of the
target set T . Nodes with low entropy split the set T into highly
unequal sized R and U , while nodes with high entropy split
T into roughly equal-sized R and U . Thus, to minimize the
number of monitors, we select nodes with the highest entropy
values at each classification stage. Ties are broken arbitrarily
in the presence of multiple nodes with the same entropy value.

Figure 1(c) illustrates this information-entropy based ap-
proach with an example. Figure 1(c) shows the classification
tree built for nodes in T . Observe that node 6 is reachable
only from nodes {2, 3}; hence, it splits the set T into two
sets U = {1, 4} and R = {2, 3}. The set {1, 4} is further

classified using node 5, and the set {2, 3} is further classed
using node 11. Thus, the set of monitors {5, 6, 11} can define
unique signatures for all nodes in {1, 2, 3, 4}.

Note that, the hitting-set based approach explained earlier
finds differentiator nodes for each node pair in G. The
information-entropy based approach, on the other hand, re-
cursively splits the entire set of nodes into smaller subsets to
build a classification tree. The computational complexity of
this algorithm is O(k ∗n2), where k is the maximum number
of monitors to be placed in G.

C. The Information-Entropy Hitting-Set (IEHS) Algorithm

The hitting-set algorithm considers all node pairs and selects
a monitor that can differentiate maximum number of nodes;
thus, the algorithm makes a globally-optimal decision while
selecting each monitor. This allows the hitting-set algorithm
to identify close-to-optimal set of monitors. However, the
need for considering all pairs of nodes makes the algorithm
computationally-intensive. The information-entropy algorithm,
on the other hand, makes a locally-optimal decision for each
branch of the classification tree. This approach minimizes
the height of the classification tree, but not the number
of intermediate nodes in the classification tree (the number
of intermediate nodes determines the number of monitors
required). The local decisioning, however, makes the algorithm
computationally more efficient.

In this section, we present a hybrid approach that is com-
putationally more efficient than the hitting-set algorithm and
achieves better results than the information-entropy algorithm.
Like the information-entropy approach, we propose to incre-
mentally build a classification tree by selecting monitors that
provide best splitting of a given subset of target nodes. To
assist this splitting, like the information-entropy approach, we
compute the information entropy for each candidate moni-
tor node. However, unlike the information-entropy approach,
instead of making local split decisions for each subset of

nodes at a level in the classification tree, the hybrid approach
considers the entire set of nodes at each level to find the best
set of classification nodes. In particular, for each subset of
target nodes Ti, i ∈ [1, n] at a depth d, we build a candidate
set of monitors Mi (with the largest information entropy value)
that can classify Ti. Then, given this collection of subsets of
the monitors C = {M1, . . . ,Mn}, we select the monitor node
that best hits all the sets in C. Unlike the traditional hitting-set
approach, where the presence of a node in a set is considered
a hit, we compute a weighted hit based on two factors: (1) the
presence of a node in a set, and (2) the classification utility of
a node in a set. This approach selects a set of monitor nodes
that best classify all subsets of the nodes at each level of the
classification tree. Given a set of n nodes, the complexity of
this approach is O(k ∗ n2), where k is the maximum number
of monitors that can be placed.

The hybrid IEHS algorithm is illustrated in Figure 1(d). As
before, node 6 is chosen as the root node of the classification
tree forming two subsets {1, 4} and {2, 3}. However, unlike
the information-entropy algorithm, the IEHS algorithm builds
the candidate set C at this level of the classification tree as:
C = {(5, 8, 9, 7, 11), (7, 11)}, and then selects node 7 as the
hitting-set for C.

Note that the proposed algorithm can also capture faults
in the monitor nodes. This can be done by selecting monitor
nodes such that each monitor node also forms a unique fault
signature.

Trade-off between instrumentation and localization ac-
curacy: In this section, so far, we have considered the problem
of placing monitors that yield a unique signature for each
node. One can reduce the number of monitors required by
relaxing this unique signature requirement. In particular, we
can define cluster size as the maximum number of nodes that
can have the same signature, and then adapt the hybrid IEHS
algorithm to identify a set of monitors that meet this relaxed
requirement as follows: Split a set of nodes into subsets only
if the cardinality of the set is greater than the cluster size.
This simple adaptation enables us to trade-off the amount of
instrumentation with fault detection and localization accuracy.
In Section VI, we demonstrate that for a real-world topology,
relaxing the unique signature requirement allows us to reduce
number of monitors from 48% to 21% of the total number of
nodes.

IV. FAULT DETECTION

Given a partial deployment of monitors the objective of fault
detection is to detect the presence of faults by observing end-
to-end latencies at the monitors. The requirement of limited
instrumentation and intrusiveness presents several challenges
in fault detection.

Limited instrumentation prevents per-node analysis: Fault
detection can be fairly straight-forward if each node is instru-
mented to monitor its own processing delay. Presence of fault
can then be detected simply by observing an increase in the
processing delay of a node. However, in a scenario with the
deployment of a limited number of monitors, the presence of

fault in one or more nodes needs to be detected by observing
the end-to-end latency of the requests arriving at the monitors.

Limited intrusiveness prevents per-request analysis: In the
past, approaches have been proposed to track individual re-
quests flowing through the system to classify requests based
on the path and type [2], [3]. However, tracking of individual
requests requires modification of applications. Such intrusive
approaches are not found viable for deployment in many
production systems.

In such a setup, the monitor observes a composite time
series of the latency of various request types. The problem
of fault detection is defined as:
Given a composite time series of end-to-end latencies con-
sisting of multiple distributions (referring to multiple request
types), detect the presence of significant and persistent change
in one or more distributions.

In this paper, we propose to use statistical significance test
to detect changes in such composite time-series. We propose to
use Student’s t-test [5] for detecting changes because Student’s
t-test works effectively even if the normality assumption of the
data is violated. This is important since the request latencies
may not always show normal distribution.

A. Proposed approach for fault detection

We divide the given time series of latency values into
observation windows of size window size. We compare the
values in each observation window with that of the current
behavior using the Student’s t-test. Student t-test computes the
probability of similarity (p-value) of distributions of the two
sets of values. If the calculated p-value is less than a threshold
(defined as similarity threshold) chosen for the statistical
significance, then it is concluded that the statistical properties
of the two sets do differ significantly. In order to detect
persistent changes, we define a variable PersistenceFactor.
We detect a fault only if the change persists for more than
PersistenceFactor number of windows. Fault detection can be
performed in near-real-time after analysis of every temporal
window.

The effectiveness of this approach depends on the appro-
priate tuning of the parameters viz. similarity threshold and
window size. Incorrect value of similarity threshold can result
in detection of too many or too few changes. Incorrect value of
window size can result in incorrect capture of normal behavior
of individual distributions. We next present techniques to
automatically tune the algorithm parameters based on the input
data properties.

Tuning of similarity threshold: The expected amount of
similarity between two windows showing normal behavior is
different in different time series. The p-value considered to be
normal in one data set is an indication of change in another
data set. To compute the similarity threshold, we first compute
a p-value by running t-test on observation windows of the
normal behavior data. The p-value thus obtained represents the
expected amount of similarity between two current observation
windows. We use this p-value as the similarity threshold. The

similarity threshold can be further tuned based on the user in-
put of the ChangeIntensity parameter. The similarity threshold
can be set to a fraction ChangeIntensity of the above computed
p-value.

Tuning of window size: Given a composite time series
consisting of multiple distributions, the algorithm demands
that the size of the window, window size, should be set such
that sufficient data points corresponding to each distribution
should be present in the window.

In order to set an appropriate observation window, we
estimate the number of distributions present in the current
observation window using Expectation Maximization Algo-
rithm. The algorithm estimates the number of distributions, n,
and the parameters (µi, σi, wi) of each distribution i where
µi, σi, and wi are mean, standard deviation, and weight of
each distribution. The weight of a distribution is the fraction
of total points in the observation window that belong to
the distribution. Let wmin = min(wi)∀i ∈ (1 . . . n) be
the minimum of the weights of all the requests. We then
define the size of the observation window as, window size =
(MinDataPoints/wmin) where MinDataPoints is the minimum
number of data points of a request type that should be
present in the observation window so that an increase in
its latency values is detected by the proposed algorithm. A
value of MinDataPoints >= 1000 suffices to capture the data
properties of a request type. This value has been computed
empirically and has been observed to give accurate results.

The resulting self-adaptive fault detection algorithm (Al-
gorithm SAFD) is run on all monitors to detect changes in
the end-to-end latencies. When the fault detection algorithm
on a monitor flags a fault, then the bit corresponding to the
particular monitor in the fault vector is set to 1. The fault
vector thus constructed by consolidating the observations of
all monitors is further diagnosed by the fault localization
algorithm presented in the next section.

V. FAULT LOCALIZATION

Given an observed fault vector and the precomputed sig-
natures of all nodes, the objective of fault localization is to
identify the faulty nodes that best explain the observed fault
vector.

A. Binary Signature Matching Algorithm (BSM)
A straight-forward approach is to match the observed fault

vector with all node signatures to find the best match. The
best matching node is declared as the likely root-cause. In the
event where an exact match is not observed, we propose to
compute string-edit distance between a k-bit binary signature
S and a k-bit binary fault vector F . String edit distance here
simply is the count of bits in F that are different from their
corresponding bits in S. The nodes whose signature has the
minimum distance from the observed fault vector are declared
as the likely root causes.

B. Weighted Signature Matching Algorithm (WSM)
The accuracy of binary signature matching relies on (1) the

accuracy of 1s and 0s in the observed fault vector and (2) the

probability of observing the node signature as the observed
fault vector. In practice, various factors such as nonuniform
traffic, overlapping latency distributions, etc. might produce
incomplete and inaccurate fault vectors. We address this issue
in the following manner:

Compute weights for the bits in observed fault vector: First,
we assign weights to the 1s present in the observed fault vector
based on the confidence of the fault detection algorithm in
observing a change. We compute this weight by computing
the amount of change and probability of dissimilarity detected
by the fault detection algorithm at a monitor.

Compute weights for the bits in node signature: Secondly,
we assign weights to the 1s present in the node signatures by
computing the probability of observing the fault in a node at a
monitor. We compute the weighted node signature as follows:
We propose to monitor the network traffic at the outgoing
edge of each node. Note that we do not track the entire path
followed by the request. We only monitor the outgoing traffic
of each node. Based on the link weights, we compute the
fraction of total number of requests passing through a node
that are likely to pass through a monitor. We use this fraction
to construct a weighted signature of a node. The weights thus
reflect the amount of change observed by the fault detection
algorithm.

Compute distance between the observed weighted fault vec-
tor and weighted node signatures: Given a weighted signature
S of a node and weighted fault vector F each of length k, we
compute their distance by comparing each value Si in S with
the corresponding value Fi in F as follows:

1) If Si = 0 and Fi = 0 then Distance = 0
2) If Si > 0 and Fi > 0 then Distance = 0
3) If Si = 0 and Fi > 0 then Distance = Fi

4) If Si > 0 and Fi = 0 then Distance = Si

The key idea behind this approach is that if there is a mismatch
between the bit values then the distance is proportional to the
confidence in the observed 1 bit. We add the distance of each
of the k values to compute the total distance between S and
F .

Identify the likely root-causes: The node signatures with
minimum distance from the observed fault vector are declared
as the likely root causes.

We show through experimental results that Algorithm WSM
performs better than Algorithm BSM in terms of accuracy.
However, under reasonable non-uniformity levels of traffic,
Algorithm BSM also works with high accuracy.

C. Addressing multiple faults (Composite Signature Matching)

In case of multiple faults, the fault vector observed at the
monitors represents a composite effect of more than one faulty
nodes. We make the assumption that the maximum number of
simultaneous node faults at any point in time in the system
is fmax. Given the fact that monitors are placed to determine
unique signatures for single node fault, the scenario of multiple
faults can be addressed in following two ways.

Single Signature Matching (SSM): Compute the string
edit distance between the observed fault vector with signature

of all nodes and report the nodes with top fmax closest match.
Composite Signature Matching (CSM): Another approach

is to pre-compute all combinations of k node faults ranging
k from 1 to fmax and generate composite signatures for
these combinations. Match the observed fault vector with the
pre-computed composite signatures and determine the best
matching combination(s).

The Single Signature Matching algorithm is computation-
ally less intensive than the other approach but can miss out
some of the faults in scenarios where some other non-faulty
node forms a better match to the observed fault vector. The
second approach on the other hand is computationally more
intensive as it involves building composite signatures of all
combinations. However, the second approach is less likely to
miss out the actual faults. We later show through experimental
evaluation that these algorithms effectively localize faults in a
variety of multiple fault scenarios.

VI. EXPERIMENTAL EVALUATION

We present a real-world experiment to demonstrate the
feasibility and effectiveness of deploying the proposed algo-
rithms in a real-world setup. Through sensitivity analysis, we
evaluate the accuracy of algorithms across a variety of network
topologies and traffic patterns using simulation.

A. Application on a real-world case-study

We ran the monitor placement algorithm on a real-world
data center topology which consists of 469 nodes. The monitor
placement algorithm IEHS identified 225 nodes (48% of the
total nodes) where the monitors need to be placed in order
to obtain unique signatures for all the nodes. By increasing
the maximum cluster size from 1 to 9, the required number
of monitors decreased from 48% to 21%. Figure 2(a) presents
the effect of increasing cluster size on the required number of
monitors.

Most nodes can still be localized with a fine granularity even
with monitors deployed at 21% of the nodes: An interesting
observation is that, beyond a point, the increase in cluster size
does not result in any significant decrease in the number of
monitors (Figure 2(a)). A large increase in maximum cluster
size (> 9) is ineffective because most of nodes in the topology
form small size clusters. Figure 2(b) presents the distribution
of number of nodes across different cluster sizes. Consider
the scenario with maximum cluster size = 9. It can be seen
that, even with a maximum cluster size set to 9, most of the
nodes still form small-size clusters (size 1, 2, and 3). Thus,
it can be inferred that even after decreasing the number of
monitors from 48% to 21% by allowing a maximum cluster
size of 9, most of the nodes can still be diagnosed with a fine
granularity.

This behavior is explained by the structure of the network
topology. A set of nodes can be part of a same-signature
cluster only if these nodes contain the same set of monitors in
their successor graphs. In other words, the successor graphs
of these nodes overlap. Analyzing the network topology, we
observed that most of the successor graphs tend to overlap

Fig. 3. (a), (b) End-to-end latency time-series observed at monitors 32, 60
respectively, reflects significant changes of node 227 resulting in a ’1’ bit in
the fault vector, (c), (d) End-to-end latency time-series observed at monitors
181, 176 does not reflect changes of node 227 resulting in a ’0’ bit in the
fault vector, (e) Observed 225-bit fault vector, (f) Node latency time-series
for node 227 showing fault as increased latency,

only within small groups of 3 to 4 nodes. In Figure 2(c) we
plot the group size of the nodes with overlapping successor
graphs and the percentage of total number of nodes that belong
to these group sizes. It can be seen from Figure 2(c) that
35% of the nodes belong to group size of 1 indicating that
successor graph of these nodes are not overlapping with any
other node. Furthermore, more than 80% of nodes tend to form
such groups of size less than 9 nodes.

IEHS outperforms other algorithms. It can be seen from
Figure 2(d) that the Random selection algorithm selects very
large number of monitors in comparison with other algorithms.
The number of monitors selected by the IEHS algorithm is
smaller than IE and HS algorithms.

After placing monitors on the chosen 225 nodes we ran the
fault detection algorithm on these monitors. At a particular
time some monitors observed an increase in the end-to-end
latency (Figure 3 (a, b)) while many monitors did not observe
any such increase (Figure 3 (c, d)). This behavior is captured
by the fault detection algorithm and a 225-bit fault vector is
computed (Figure 3 (e)). Based on signature matching, node
227 is identified as the likely root-cause behind the observed
latency increase (Figure 3 (f)). Node 227 shows an increase
in node latency in the similar temporal region as the signature
nodes and thus is likely to cause the increase in the end-to-end
latencies observed at the monitors.

B. Sensitivity Analysis

1) Setup: In order to evaluate the proposed algorithms over
a wide range of networks we simulate request paths as DAGs
(directed acyclic graphs) and generate different types of DAGs
using [6]. We apply the monitor placement algorithm on these
graphs to compute node signatures. We simulate workload
using CSIM [7]. We inject faults at randomly chosen nodes
by increasing the processing delay and run fault detection at
the monitors.

We use the following terms to refer to the properties of the
DAGs. The size of a graph refers to the number of nodes in the
graph. The fatness of a graph represents amount of parallelism
in the DAG. Value of fatness ranges from 0 to 1. A small

Fig. 2. (a) Effect of increasing cluster size on the number of monitors, (b) Distribution of the number of nodes forming different cluster sizes, (c) Distribution
of size of groups with same successor graph, (d) Comparison of IEHS algorithm with HS and IE algorithm.

fatness value leads to a thin DAG (e.g., zero fatness results
in a chain) with a low path parallelism, while a large fatness
value induces a fat DAG with a high degree of parallelism.
In the extreme case of fatness = 1 almost all nodes in the
topology are disconnected resulting in maximum degree of
parallelism. In the following experiments we set the default
value of fatness to 0.5. The density of a DAG determines the
numbers of links in the DAG. Value of density ranges from 0
to 1, 0 indicating a very sparse graph and 1 indicating a very
dense graph. In the following experiments we set the default
value of density to 0.5.

2) Monitor placement: Effect of increase in the number
of nodes: We generate network topologies with increasing
network size and keep other properties of the graph such as
fatness to a constant value. The monitor placement algorithms
select monitors such that all nodes have unique signatures
(cluster size = 1).

Network size does not affect the percentage of nodes used as
monitors: Algorithm HS and IEHS compute smallest number
of monitors and the percentage of monitor nodes remains
constant for increasing network sizes (close to 50% and 45%
respectively) (Figure 4(a)). Thus, the size of the network does
not affect the percentage of total number of nodes selected as
monitors. Instead, it is affected by other properties that define
the structure of the graph, particularly fatness of the graph
(discussed later).

In case of Random algorithm and IE algorithm, the number
of monitors increases slightly with increase in the network
size. With larger number of nodes in the network, the number
of inappropriate choices for monitor placement increases.
Random algorithm makes a random choice and the Algo-
rithm IE makes a locally optimal choice. Hence, both these
algorithms give less optimal results in presence of larger
number of inappropriate choices and result in an increase in the
percentage of total nodes used as monitors. Algorithm HS and
Algorithm IEHS, on the other hand, make the most suitable
choice at each level and thus are not affected by larger number
of inappropriate monitor node choices.

Effect of increase in the fatness of the network As
explained above, the fatness of a graph represents amount of
parallelism in the directed acyclic graph (DAG).

Fatness affects the number of required monitors: Figure

Fig. 4. (a) Effect of increasing number of nodes on required number of
monitors (fatness factor = 0.8). (b) Effect of increasing fatness of graph on
required number of monitors.

Fig. 5. Effect of auto tuning of threshold on false positives and false
negatives.

4(b) shows the number of monitors computed by the IEHS
algorithm for different fatness of a 100-node network. It can be
seen that the required number of monitors decreases initially
with increasing fatness in the graph. However, after a certain
threshold of fatness, the number of monitors increase.

A DAG with fatness zero forms a linear chain like topology.
In order to obtain unique signatures a chain topology requires
every alternate node to be chosen as a monitor node. Thus
an optimal algorithm would choose 50% nodes as monitors.
The proposed algorithm being approximate in nature chooses
approximately 60% of nodes as monitors.

With increasing fatness the number of parallel paths in-
creases allowing fewer number of monitors to provide unique
signatures. However, very large fatness values (close to 1)
result in highly disconnected single-node graphs. Thus very fat
graphs demand a large number of monitors to cover each of

the disconnected sub-graphs. The knee of this curve depends
on the density of the DAG. The current experiments were
performed on network with density = 0.5. Denser graphs
(density close to 1 i.e. larger number of edges) will result
in the knee point at a larger fatness value.

3) Fault detection: We evaluate the fault detection (Algo-
rithm SAFD) on the basis of the generated false positives (FPs)
and false negatives (FNs). False positive refers to no-fault
events when the fault detection algorithm incorrectly detects
a fault. False negative refers to the cases when the algorithm
fails to detect the presence of fault.

Effect of overlap and auto-tuning of similarity threshold:
Recall that a monitor receives time series consisting of multi-
ple distributions. The amount of overlap in the distributions
affects the fault detection accuracy. We define overlap as
the percentage of total number of values received at the
monitor that can belong to more than one distribution. The
effect of overlap can be addressed by appropriate tuning of
the similarity threshold value. As shown in Figure 5(a) and
Figure 5(b), a small value of threshold detects only very large
changes and thereby reduces false positives. However, small
value of threshold (th=low) misses some actual faults thereby
increasing false negatives. A reverse effect is observed with
high threshold values (th=high) resulting in high false positives
but low false negatives.

Auto-tuning of similarity threshold is effective. It can be
seen that the auto-tuned threshold (th=auto) results in both
low false positives and low false negatives. Figure 5(c) shows
that algorithm with auto-tuned threshold performs better than
any of the static threshold settings.

Effect of skew and auto-tuning of window size: The accu-
racy of the fault detection algorithm is also dependent upon the
skew in the weights of distributions. High skew refers to cases
where the number of data points of the distributions received
within a window are very different and the observation window
might not capture enough points of all distributions leading to
incorrect inference of normal behavior. Such cases can lead to
high false positives or high false negatives.

Auto-tuning of window size is effective. Effect of skew can
be addressed by setting appropriate window size. In case of
high skew in the distribution weights, a large window size
should be used such that enough data points of all distributions
are captured in the window. Inaccuracy tends to decrease
initially (window size = 4000 to 8000) with increasing window
size because with larger window size the normal behavior is
better captured (Figure 6(a)). Beyond a point (window size
>= 14000) the inaccuracy tends to increase because the
system incorrectly considers even the change as part of normal
behavior. The window size beyond which the inaccuracy tends
to increase again depends on the location where the change
starts taking place. In the experiments, we introduce a change
after approximately 12000 data points.

Hence, the window size has to be large enough to capture
data-points of all distributions, but should be small enough to
avoid incorrectly capturing change as part of normal behav-
ior. Figure 6(a) also shows that auto-tuning of window size

Fig. 6. (a) Effect of auto tuning of window size on false positives and false
negatives. (b) Effectiveness of Weighted Signature Match (WSM) and Binary
Signature Match (BSM) with increasing non-uniformity in traffic.

correctly computes window size such that inaccuracy is low.
4) Fault localization: We evaluate fault localization on the

basis of false positives and false negatives generated. The false
positives measure the number of nodes incorrectly localized
as the root-cause. The false negatives measure the number of
actual faults that the algorithm fails to localize as the root-
causes. We evaluate the effectiveness of fault localization in
case of inaccurate fault detection and multiple simultaneous
faults.

Effect of partial signatures: We evaluate fault localization
algorithms (Binary Signature Match (BSM) and Weighted
Signature Match (WSM)) by performing experiments with
increasing non-uniformity of the traffic. The uniformity of
traffic refers to the pattern of traffic being sent by a node
on all of its outgoing links. A highly uniform traffic will send
equal amount of traffic across all of its outgoing links. On
the other hand, a highly non-uniform traffic will send traffic
across its outgoing links in a highly skewed manner, sending
very high traffic over a few links and very low traffic over few.
As discussed earlier, the level of uniformity of traffic affects
the probability of observing a node’s failure at the reachable
downstream monitors.

WSM outperforms BSM. As shown in Figure 6(b), with
increasing non-uniformity the inaccuracy of Binary Signature
Match (BSM) increases. The Weighted Signature Match algo-
rithm (WSM) effectively captures non-uniformity and shows
lower false positives and false negatives. For a non-uniformity
level less than 6, Algorithm WSM demonstrates more than
80% accuracy in fault localization. The weighted signature
matching (Algorithm WSM) captures the probability of traffic
reaching the monitor node and the confidence in the change
observed by the fault detection and hence results into more
accurate signature match.

Effect of multiple faults: We next change the number
of simultaneous faults occurring in the system. With larger
number of faults the resulting fault vector is composite in
nature and comprises of more than one node signatures. With
this experiment, we test the performance of the algorithms
SSM (Single Signature Match) and CSM (Composite Signa-
ture Match) in analyzing a composite fault vector.

CSM produces low FNs but high FPs. With increasing
number of faults, CSM maintains near-zero false negatives
while the SSM algorithm on the other hand tends to generate

Fig. 7. Effectiveness of Composite Signature Match (CSM) and Single
Signature Match (SSM) with increasing number of faults.

higher false negatives (Figure 7) . The composite signature of
the nodes that have actually failed will always exactly match
the observed fault vector (assuming high accuracy of fault
detection). Hence the composite signature match results in
near-zero false negatives. Single signature match is based on
string-edit distance and signature of actual failed nodes might
not always be the closest match to the observed fault vector
and hence results in higher false negatives.

However, with increasing number of faults, the number of
false positives generated by CSM are larger than the false pos-
itives generated by SSM. An incorrect match of a composite
signature is more expensive than that of a single signature
match. One incorrect match in case of single signature match
will result in one false positive but one incorrect match in
composite signature match will result in a set of nodes as
false positives. The performance of both the algorithms could
be further improved by using weighted signature matching.

VII. RELATED WORK

The problem of fault localization and performance debug-
ging has been addressed by various researchers in the past.

Dependency model: Building dependency models [2], [3]
requires knowledge of request flows which is not viable in
many production systems. We simply use the per-hop network
connectivity of the components for analysis. Techniques such
as [8], [9] are also based on component-component dependen-
cies. However, these techniques do not address the problem of
monitor placement and fault detection. Our approach instead
presents algorithms for systematic selection of monitors and
fault detection. The model proposed by [8] can be leveraged
by our approach for a finer localization. Machine learning
and statistical analysis: Bayesian networks and statistical
correlation techniques used in [4], [10] demand large amount
of instrumentation. These can be used in conjunction with
our approach for finer analysis. Rule engine: These systems
perform diagnosis based on a set of pre-programmed rules [11]
but are not generic in nature.

We next present related work in the context of the indi-
vidual problems of monitor placement, fault detection, and
fault localization. Monitor placement: Most of the proposed
techniques in the past [2], [3], [4], [9] monitor all nodes to
collect component-level metrics. Techniques proposed in [8]
use limited placement of monitors but do not addresses the
problem of systematic selection of monitors. Fault detection:

The problem of fault detection has been typically addressed
in three ways: reading system alerts [2], detection of SLO
violations [4], and change detection [9]. The change detection
techniques used in the past are applied on time-series con-
sisting of a single distribution, such as latency time series of
specific request or CPU utilization of a server, etc. However,
because of the limited placement of monitors, the fault detec-
tion technique proposed in this paper processes a composite
time-series consisting of multiple distributions. The proposed
algorithm also automatically tunes various parameters based
on data properties. Fault localization: Past techniques are
based on rule chaining [11], belief propagation [8], [4], and
signature matching [2]. The signature matching algorithms
proposed in the past use binary signatures and fail to capture
inaccuracies in signatures. We propose a weighted signature
matching algorithm that addresses issues of multiple faults and
signature inaccuracies.

VIII. CONCLUSION

We address the problem of achieving high accuracy of
detecting and localizing performance faults in data centers,
while minimizing the instrumentation intrusiveness and over-
head. We show that effective monitoring can be performed
by instrumenting only 21% of the components. We show that
the proposed self-adaptive fault detection algorithm detects
faults with low false positives and negatives. We show that the
proposed signature matching algorithm performs fault local-
ization with a reasonably small number of false negatives. The
experiment results show that Varanus can perform localization
with low instrumentation and greater than 80% accuracy with
false positives and false negatives being less than 20%.

REFERENCES

[1] E. Cecchet, M. Natu, V. Sadaphal, P. Shenoy, and H. Vin, “Performance
debugging in data centers: Doing more with less,” in First International
Conference on Communication Systems and Networks, Bangalore, India,
January, 2009.

[2] M. Y. Chen, E. Kiciman, E. Fratkin, O. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in In Pro-
ceedings of the International conference on Dependable Systems and
Networks, pages 595604, 2002.

[3] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: Online
modeling and performance-aware systems,” in 9th conference on Hot
Topics in Operating Systems, Berkeley, CA, USA, HOTOS’03, 2003.

[4] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase, “Correlating
instrumentation data to system states: A building block for automated
diagnosis and control,” in OSDI, 2004.

[5] A. M. Glenberg and M. E. Andrzejewski, “Learning from data: An
introduction to statistical reasoning,” in Lawrence Erlbaum, 2007.

[6] DagGen, “http://www.loria.fr/ suter/dags.html,”
[7] http://www.mesquite.com/, “Csim 20 development toolkit for simulation

and modeling,”
[8] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and

M. Zhang, “Towards highly reliable enterprise network services via
inference of multi-level dependencies,” in Sigcomm, 2007.

[9] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl,
“Detailed diagnosis in enterprise networks,” in SIGCOMM, 2009.

[10] A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and
Q. Zhao, “Towards automated performance diagnosis in a large iptv
network,” in SIGCOMM, 2009.

[11] K. Appleby, G. Goldszmidt, and M. Steinder, “Yemanja-a layered event
correlation system for multi-domain computing utilities,” Journal on
Network and Systems Management, vol. 10, no. 2, pp. 171–194, Jun.,
2002.

